Immunizing Multilinear Maps Against Zeroizing Attacks
نویسندگان
چکیده
In recent work Cheon, Han, Lee, Ryu, and Stehlé presented an attack on the multilinear map of Coron, Lepoint, and Tibouchi (CLT). They show that given many low-level encodings of zero, the CLT multilinear map can be completely broken, recovering the secret factorization of the CLT modulus. The attack is a generalization of the “zeroizing” attack of Garg, Gentry, and Halevi. We first strengthen the attack of Cheon, Han, Lee, Ryu, and Stehlé by showing that CLT can be broken even without low-level encodings of zero. This strengthening is sufficient to show that the subgroup elimination assumption does not hold for the CLT multilinear map. We then present a generic defense against this type of “zeroizing” attack. For an arbitrary asymmetric composite-order multilinear map (including CLT), we give a functionality-preserving transformation that ensures that no sequence of map operations will produce valid encodings (below the zero-testing level) whose product is zero. We prove security of our transformation in a generic model of composite-order multilinear maps. Our new transformation rules out “zeroizing” leaving no currently known attacks on the decision linear assumption, subgroup elimination assumption, and other related problems for the CLT multilinear map. Of course, in time, it is possible that different attacks on CLT will emerge. Update: Since the publication of this work, Coron, Lepoint, and Tibouchi [CLT14] have further strengthened the original attacks of Cheon et al. With the stregthened attack, the mitigations we describe in this work no longer suffice to secure the original CLT multilinear map. However, we have preserved the original exposition of our zero-immunizing transformation (Section 3), since this transformation is of independent interest. Notably, our transformation still rules out low-level zero encodings (Theorem 3.14), and thus provides robustness in the setting of deterministic encodings.
منابع مشابه
Multilinear Map via Scale-Invariant FHE: Enhancing Security and Efficiency
Cryptographic multilinear map is a useful tool for constructing numerous secure protocols and Graded Encoding System (GES) is an approximate concept of multilinear map. In multilinear map context, there are several important issues, mainly about security and efficiency. All early stage candidate multilinear maps are recently broken by so-called zeroizing attack, so that it is highly required to...
متن کاملNew Multilinear Maps from CLT13 with Provable Security Against Zeroizing Attacks
We devise the first weak multilinear map model for CLT13 multilinear maps (Coron et al., CRYPTO 2013) that captures all known classical polynomial-time attacks on the maps. We then show important applications of our model. First, we show that in our model, several existing obfuscation and order-revealing encryption schemes, when instantiated with CLT13 maps, are secure against known attacks und...
متن کاملNew Multilinear Maps from CLT13 with Provable Security Against Zeroizing Attacks
We devise the first weak multilinear map model for CLT13 multilinear maps (Coron et al., CRYPTO 2013) that captures all known classical polynomial-time attacks on the maps. We then show important applications of our model. First, we show that in our model, several existing obfuscation and order-revealing encryption schemes, when instantiated with CLT13 maps, are secure against known attacks und...
متن کاملZeroizing without zeroes: Cryptanalyzing multilinear maps without encodings of zero
We extend the recent zeroizing attacks of Cheon et al. on multilinear maps to some settings where no encodings of zero below the maximal level are available. Some of the new attacks apply to the CLT scheme (resulting in total break) while others apply to the GGH scheme (resulting in a weak-DL attack).
متن کاملMultilinear Maps Using a Variant of Ring-LWE
GGH13, CLT13 and GGH15 of multilinear maps suffer from zeroizing attacks. In this paper, we present a new construction of multilinear maps using a variant of ring-LWE (vRLWE). Furthermore, we also present two new variants of vRLWE, which respectively support the applications of multipartite key exchange and witness encryption. At the same time, we also present a new variant of GGH13 using matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014